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Abstract. The properties of a molecularly thin film of spherically symmetric molecules confined
to a chemically heterogeneous slit-pore were investigated by Monte Carlo simulations in a grand
mixed stress–strain ensemble. The slit-pore comprises two identical plane-parallel solid substrates,
each of which consists of alternating strips of solid of two types: strongly adsorbing (width ds)
and weakly adsorbing. Under favourable thermodynamic conditions the confined film consists of
fluid bridges—that is, a high(er)-density fluid over the strongly attractive strip surrounded by a
low(er)-density fluid supported by the (outer) weakly attractive strips. By misaligning the opposite
substrates, bridge phases can be exposed to a shear strain αsx (0 � α � 1

2 , sx the side length of the
simulation cell) and the associated shear stress Tzx of (fluidic) bridge phases can be calculated from
molecular expressions. The stress curve Tzx(αsx) is qualitatively similar to the one characteristic
of solidlike films confined between atomically structured substrates in that the initial response to
small shear strains is Hookean, and this is followed by an increasingly nonlinear regime up to the
yield point where Tzx(αsx) assumes its maximum. We also investigated the influence of chemical
corrugation cr := ds/sx on Tzx(αsx). With increasing cr , yield strain and stress increase at first up
to a maximum and decline thereafter. By employing the theory of corresponding states, Tzx(αsx)

is renormalized by yield stress and strain such that the results can be represented uniquely by a
master curve independent of any system-dependent parameters.

1. Introduction

A key feature distinguishing bulk fluids (i.e., gases and liquids) from solids is the inability
of the former to resist shear deformations. A bulk solid, on the other hand, responds to
such a deformation similarly to a Hookean spring if the deformation is small enough—that
is, the shear stress increases linearly with its conjugate strain. For larger shear strains the
response of the solid becomes increasingly nonlinear and, as a result, the solid may eventually
melt. Bulk shear melting is a typical first-order phase transition characterized by release of
latent heat. Hookean behaviour at small shear strains followed by an increasingly nonlinear
response to larger strains is also observed if a thin solidlike film is confined to spaces of
molecular dimension(s) by solid substrates, a situation currently receiving a lot of attention
both theoretically and experimentally (see [1] for an excellent review of experimental and
theoretical work devoted to the rheology of molecularly thin confined films).

Experimentally the rheology of molecularly thin confined films can be investigated with
nearly molecular precision in the surface forces apparatus (SFA) [2]. In the SFA a thin film is
confined between the surfaces of two macroscopic cylinders arranged such that their axes are at
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right angles. The surface of each cylinder is covered by a thin mica sheet with a silver backing,
which permits one to measure the separation between the surfaces by optical interferometry.
Since the cylinder radii are macroscopic, their surfaces may be taken as parallel on a molecular
length scale around the point of minimum distance. In addition, the surfaces are locally planar,
since mica can be prepared with atomic smoothness over molecularly large areas. This set-
up is immersed in a bulk reservoir of the same fluid of which the film consists. Thus, at
thermodynamic equilibrium, temperature T and chemical potential µ are equal in the two
subsystems (i.e., film and bulk reservoir). A confined film can be exposed to a shear strain
by attaching a movable stage to the upper substrate (i.e., wall) via a spring characterized by
its spring constant and moving this stage at some constant velocity, say, in a direction parallel
to the film–wall interface. This is usually effected under constant load (i.e., constant pressure
exerted in the direction normal to the substrate surfaces). Experimentally it is observed that the
upper wall first ‘sticks’ to the film as one might say because the upper wall remains stationary.
From the known spring constant and the measured elongation of the spring, the shear stress
sustained by the film can be determined. Beyond a critical shear strain (i.e., at the so-called
‘yield point’ corresponding to the maximum shear stress sustained by the film) the shear stress
declines abruptly and the upper wall ‘slips’ across the surface of the film. If the stage moves
at a sufficiently low speed the walls eventually come to rest again until the critical shear stress
is once again attained, so the stick–slip cycle repeats itself periodically.

A key issue still under discussion is whether or not the rheological behaviour of confined
phases reflects confinement-induced solidification or not (see [3, 4] and references therein).
For instance, Klein and Kumacheva carried out SFA experiments in which an octamethylcyclo-
tetrasiloxane (OMCTS) film confined between mica surfaces is exposed to a shear strain [3,4].
In SFA experiments OMCTS plays a prominent rôle because of its approximately spherically
symmetric molecular structure, so models based upon ‘simple’ fluids (i.e., fluids composed
of molecules having only translational degrees of freedom) can be employed theoretically to
understand many important aspects of SFA experiments [5] (see also below). In their work
Klein and Kumacheva find that for large substrate separations of 1160 Å, ‘confined’ OMCTS
behaves essentially like a bulk liquid. In this case a characteristic relative lateral displacement of
the upper substrate is observed on account of thermal noise (see figure 6(a) in [3]). This motion
remains unaltered if the distance between substrate surfaces is reduced down to approximately
62 Å. However, for a slightly smaller substrate separation of about 54 Å the lateral motion of
the upper substrate suddenly disappears as if the film were capable of ‘gluing’ the substrate
to some fixed position in space (see figures 6(b) and 6(c) of [3]). Klein and Kumacheva
take the abrupt disappearance of lateral substrate motion as evidence of confinement-induced
solidification of OMCTS in the narrow gaps between the mica surfaces. If the above films
are exposed to oscillatory shear forces, only the thinnest one is capable of sustaining a shear
stress, which Klein and Kumacheva take as further evidence for a liquid–solid phase transition
in OMCTS films triggered by confinement.

Theoretically, most previous studies support the notion of confinement-induced solid-
ification of ‘simple’-fluid films between commensurately structured substrate surfaces [1].
These substrates are composed of individual atoms arranged according to some solid structure
such that the lattice constant of the confined solidlike film, �f , and that of the substrate,
�, are identical. Solidification of the film (which is in thermodynamic equilibrium with
bulk liquid ) occurs by means of a template effect if the separation between the planar
substrates is comparable to the range of the film–substrate interaction potential and if the
substrates are aligned favourably in transverse directions. Thus, by gradually misaligning the
substrates, a solidlike film can be exposed to a shear strain and the conjugate shear stress can
be calculated.
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The approaches used to study confined films under shear theoretically can generally be
grouped into two different categories which may be labelled ‘dynamical’ [6–12] and ‘quasi-
static’ [13–20]. In the dynamical approaches a stationary nonequilibrium state is created by
either applying an external driving force [6] or by explicitly moving a substrate wall [7,9–12]
in nonequilibrium molecular dynamics (NEMD) simulations to mimic dynamical aspects of
a corresponding SFA experiment directly on a molecular scale. However, the relationship
between NEMD simulations [7,9–12] and SFA experiments remains obscure for a number of
reasons. First, to describe the motion of the substrate wall on a physical timescale, an equation
of motion needs to be solved which inevitably involves the mass of the wall. However, there
are no physical criteria on which the choice of a specific value for this mass could be based.
Second, even though the wall is a macroscopic object in the SFA experiment, its mass cannot be
too much larger than the mass of a film molecule in the NEMD simulations because otherwise
the wall would remain at rest on the timescale on which film molecules move. In fact, the
ratio of the mass of a single film molecule to that of the entire wall is sometimes as small
as 1/8 [11, 12], so one can expect relaxation phenomena in the film to depend sensitively
(and therefore unphysically from an experimental perspective) on this arbitrarily selected wall
mass [21]. Third, the speed at which the walls are slid in the SFA experiment is typically of
the order of 10−9–10−7 Å ps−1 [22], so under realistic conditions the walls remain practically
stationary on a typical length scale and timescale of molecular relaxation processes. In NEMD
simulations of SFA models one is therefore ineluctably forced to resort to unrealistically high
shear rates (even if one assumes the film to be composed of molecules much heavier than
rare-gas atoms) to obtain a tractable signal-to-noise ratio for quantities of interest. Thus,
the relevance of molecular-scale dynamical simulations to boundary lubrication phenomena
remains highly questionable.

Surprisingly little attention has been paid so far to the fact that even a fluidlike confined film,
if exposed to a shear strain, may exhibit features normally characteristic of a solid—that is, the
strain dependence of the shear stress obeys Hooke’s law initially; for larger strains a yield point
exists even though the associated yield stress is reduced in magnitude compared with that for a
solidlike film. For example, if � is reduced slightly such that �/�f � 0.94 (with �f referring to a
bulk solid composed of the confined material having the same crystallographic structure as the
substrate), a confined film is prevented from solidifying regardless of substrate alignment. This
was demonstrated by Schoen et al who studied various translational and bond-orientational
structural correlation functions for a ‘simple’-fluid film confined between such incommensurate
substrate surfaces (see figure 5 in [13]). However, the shear stress characteristic of the film
still exhibits the Hookean regime for small deformations and a yield point at larger shear
strains (see figure 2(b) in [13]). However, the yield stress is lower by about a factor of
3 compared with that of a corresponding solidlike film confined between commensurately
structured (�/�f = 1) substrates (see figure 2(b), figure 2(c) in [13]). The purpose of the
present study is to provide further evidence for the irrelevance of solidlike structures as far as
the qualitative response of confined matter to shear deformations is concerned. In fact, our
results indicate that any sufficiently thin confined film will probably be capable of sustaining a
shear strain provided that it is inhomogeneous in the direction of the applied strain regardless
of its physical state.

The remainder of the paper is organized as follows. In section 2 we introduce our model
system. Section 3 is devoted to a brief summary of the thermodynamics of strained confined
films and to an introduction of molecular expressions for relevant thermomechanical properties.
Results are presented in section 4. The paper ends in section 5 with a summary of our main
findings and their discussion.
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2. Model system

Our model consists of a film composed of spherically symmetric molecules sandwiched
between the surfaces of two solid substrates. The substrate surfaces are planar, parallel, and
separated by a distance sz along the z-axis of the coordinate system. The substrates are semi-
infinite in the z-direction, occupying the half spaces sz/2 � z � ∞ and −∞ � z � −sz/2,
and are infinite in the x- and y-directions. Each substrate comprises alternating slabs of two
types: strongly adsorbing and weakly adsorbing. The ‘strong’ and ‘weak’ slabs have widths
ds and dw/2, respectively, in the x-direction and are infinite in the y-direction. If the substrates
are aligned as in figure 1 the system is thus periodic in the x-direction with period ds +dw and its
properties are translationally invariant in the y-direction. In practice we take the system to be
a finite piece of the film, imposing periodic boundary conditions [23] on the planes x = ±sx/2
and y = ±sy/2 where sα (α = x, y) is the side length of the system in the α-direction.

Substrate atoms are assumed to be of the same ‘diameter’ (σ ) and to occupy the sites of the
face-centred cubic (fcc) lattice (the substrate surfaces are taken to be (100) planes) where � is
taken to be the same for the atomic species in both strong and weak slabs. Thus, substrate atoms
forming these slabs are distinguished only by their respective strengths of interaction with film
molecules. We assume the total potential energy to be a sum of pairwise-additive Lennard-
Jones (LJ) (12, 6)-type potentials u(r) (see section 4). For the interaction between a pair of
film molecules the potential-well depth ε = εff (i.e., uff(r)). The nanoscale heterogeneity of
the substrate is characterized by ε = εfs (i.e., ufs(r)) for the interaction of a fluid molecule with
a substrate atom in the strong (central) slab, and by ε = εfw (i.e., ufw(r)) for the interaction of
a fluid molecule with a substrate atom in either of the two weak (outer) slabs (see figure 1).
We take εfs/εff = 1.25 and εfw/εff = 10−3.

Since we are concerned with the effects of nanoscale chemical heterogeneity on the
behaviour of a confined fluid, we expect details of the substrate structure at the atomic level
not to matter greatly. Therefore, we adopt a mean-field representation of the interaction of a
fluid molecule with the substrate, which we obtain by averaging the fluid–substrate interaction
potential over positions of substrate atoms in the x–y plane. The resulting mean-field potential
can be expressed as [24–26]

�[k] = −3π

(
σ

�

)2 ∞∑
m=−∞

∞∑
m′=0

{
(εfw − εfs)

[
�

(
x̃ +

ds

2
− msx,

sz

2
+ m′δ� ± z

)

− �

(
x̃ − ds

2
− msx,

sz

2
+ m′δ� ± z

)]

− εfw

[
�

(
x̃ +

sx

2
− msx,

sz

2
+ m′δ� ± z

)

− �

(
x̃ − sx

2
− msx,

sz

2
+ m′δ� ± z

)]}
(1)

where δ� is the spacing between successive crystallographic planes in the ±z-direction. The
sign is chosen according to the convention + ↔ k = 1 and − ↔ k = 2.

Because of the chemical corrugation of each substrate (i.e., the presence of strongly and
weakly adsorbing slabs), a confined fluid can be exposed to a shear strain by misaligning the
substrates in the x-direction according to

x̃ :=
{
x k = 1

x − αsx k = 2
(2)
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ds

sx

δ

Figure 1. A schematic diagram of a simple fluid confined by a chemically heterogeneous model
pore. Fluid molecules (grey spheres) are spherically symmetric. Each substrate consists of a
sequence of crystallographic planes separated by a distance δ� along the z-axis. The surface planes
of the two opposite substrates are separated by a distance sz. Periodic boundary conditions are
applied in the x- and y-directions (see the text).

where α := δα/sx is a dimensionless number and δα is the magnitude of the relative dis-
placement of the substrates with respect to each other in the +x-direction. According to this
definition and because of the periodicity of the substrate structure {α|0 � α � 1

2 }, α = 0 refers
to perfectly aligned substrates (i.e., substrates ‘in registry’) whereas α = 1

2 is the maximum
misalignment (i.e., substrates ‘out of registry’). In (1) the auxiliary function � is defined as
(see [26] for details)

�(x ′′, z′′) := 21

32
I3(x

′′, z′′) − I4(x
′′, z′′) (3)

where

I3(x
′′, z′′) = x ′′σ 10

9z′′2√R9

[
1 +

8

7
S +

48

35
S2 +

64

35
S3 +

128

35
S4

]
(4)

I4(x
′′, z′′) = x ′′σ 4

3z′′2√R3
[1 + 2S] . (5)

Here R := x ′′2 + z′′2 and S := R/x ′′2.
It is important at this point to appreciate the symmetry of the whole fluid–substrate potential

� = �[1] +�[2]. When the z-coordinate of the film is reflected through the mirror plane z = 0,
−z in the arguments z′′ = sz/2+m′δ�±z of �[1] changes to +z in the arguments of �[2] and vice
versa. The sum � is therefore invariant under reflections in the z = 0 plane. Likewise, �[1]

and �[2] are separately invariant under reflection in the x-plane, although the proof involves
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more subtle interconversions. For example, under the transformation x̃ → −x̃,

�

(
x̃ +

ds

2
− msx, z

′′
)

x̃→−x̃−→ �

(
−x̃ +

ds

2
− msx, z

′′
)

= −�

(
x̃ − ds

2
+ msx, z

′′
)

(6)

where the equality holds because both I3 and I4 are odd functions of x ′′. Likewise the second
term (m � 0) is converted into the negative first term (m � 0), so the transformation x̃ → −x̃

interchanges the first and second terms in (1) with the appropriate change in sign. The same
applies to the third and fourth terms in (1) as one can easily verify. Therefore, and because
{m|−∞ � m � ∞} in (1), �[k] is an even function of x̃.

Because of this symmetry, �[k] need only be represented in one half (say, 0 � x � sx/2,
−sz/2 � z � sz/2) of the x–z plane [26]. In this half, �[k] is computed at the nodes of a two-
dimensional grid prior to the simulation where we employ a mesh of δx = δz = 1.25×10−2σ .
In practice, a sufficiently accurate numerical representation of �[k] is obtained by limiting m

and m′ in (1) to the respective ranges {m|−2 � m � 2} and {m′|0 � m′ � 50} as tests in [26]
revealed. During the simulation the value of �[k] corresponding to the actual position of a
fluid molecule is computed by two-dimensional interpolation between the nodes, as detailed
in [26].

3. Thermomechanical properties

3.1. Thermodynamic considerations.

Henceforth we wish to investigate confined films exposed to shear strains under conditions
closely resembling those of parallel SFA experiments. Therefore, we perceive the confined
film as an open system in the thermodynamic sense. The film is furthermore subjected to a
fixed compressional stress Tzz (i.e., load) in the direction normal to the substrate plane. By
a treatment parallel to the one detailed in section II.A.2 of [5] one can show that under these
conditions the generalized Gibbs potential

Ĝ := U − T S − Nµ − Tzzsxsysz (7)

is minimum in thermodynamic equilibrium. In (7), U is the internal energy, S is the entropy,
and N is the number of fluid molecules. With the aid of Gibbs’ fundamental equation

dU = T dS + µ dN + Txxsysz dsx + Tyysxsz dsy + Tzzsxsy dsz + Tzxsxsy d(αsx) (8)

the exact differential of Ĝ can be cast as

dĜ = −S dT − N dµ + (Txx − Tzz)szsy dsx + (Tyy − Tzz)szsx dsy
− Asz dTzz + TzxA d(αsx) (9)

where A := sxsy is the fluid–substrate interfacial area, Tββ is the compressional stress exerted
on a plane pointing in the β-direction (β = x, y, z), and Tzx is the shear stress conjugate to the
shear strain αsx . Thus, {T ,µ, sx, sy, Tzz, αsx} is the set of natural variables of Ĝ [5]. Because
of the symmetry of the confined fluid (see figure 1) it is furthermore clear that

ζ(T , µ, sx, Tzz, αsx) := (Tyy − Tzz)sz (10)

is independent of sy , so for fixed T , µ, sx , Tzz, and αsx , Ĝ is a homogeneous function of degree
one in sy . Hence, under these constraints Euler’s theorem applies and one obtains

Ĝ = ζA fixed T ,µ, sx, Tzz, αsx (11)

where we take the zero of Ĝ to coincide with sy = 0. Because of (11), ζ can be interpreted as
an areal free-energy density (i.e., a free energy per unit area).
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3.2. Molecular expressions for the shear stress

By means of a quantum-statistical treatment one can furthermore show that [5]

Ĝ = −β−1 ln χ (12)

where β := 1/(kBT ) (kB: Boltzmann’s constant) and χ(T , µ, sx, sy, Tzz, αsx) is the partition
function in the present grand mixed stress–strain ensemble. In the classical limit (with which
we shall be exclusively concerned) one can show [5] that

χ(T , µ, sx, sy, Tzz, αsx) =
∑
N

exp(βµN)
∑
sz

exp(βTzzAsz)Q(N, T , sx, sy, sz, αsx) (13)

where

Q = Z

N !$3N
(14)

is the canonical ensemble partition function after the usual analytical integration over
momentum space and

$ =
√
h2β/2πm

(h: Planck’s constant; m: molecular mass) is the thermal de Broglie wavelength. In (14),

Z =
N∏
i=1

∫
V

dri exp[−βU(rN)] (15)

where the N -particle configuration rN is represented by the 3N -dimensional vector
(r1, r2, . . . , rN). For the present system the configurational energy U can be cast as

U(rN) = 1

2

N∑
i=1

N∑
j=1
=i

uff(rij ) +
2∑

k=1

N∑
i=1

�[k](̃xi , zi; ds, sx, sz) =: UFF +
2∑

k=1

U
[k]
FS . (16)

Following the procedure detailed in [27], it is easy to show from (9)–(16) that

ATzx =
(

∂Ĝ
∂(αsx)

)
T ,µ,sx ,sy ,Tzz

= − kBT

N !$3Nχ

∑
N

exp(βµN)
∑
sz

exp(βTzzAsz)

(
∂Z

∂(αsx)

)
T ,sx ,sy

=
〈

∂U
[2]
FS

∂(αsx)

〉
= −

〈
N∑
i=1

f [2]
x (̃xi, zi)

〉
= − 〈

F [2]
x

〉
(17)

where

f [k]
x (̃xi, zi; ds, sx, sz) := −∂�[k](̃xi , zi; ds, sx, sz)

∂xi

(18)

is the x-component of the force exerted by the upper substrate (k = 2) on film molecule i

and F [2]
x is the total force exerted by the upper substrate on a particular configuration of film

molecules. As was shown in [26], the expression for f [k]
x matches (1) formally except for the

function �(x ′′, z′′) which must be replaced by

-(x ′′, z′′) := 21

32
I1(x

′′, z′′) − I2(x
′′, z′′) (19)

where

I1(x
′′, z′′) :=

√(
σ 2

R

)11

(20)
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and

I2(x
′′, z′′) :=

√(
σ 2

R

)5

. (21)

Because of (18) we term (17) the ‘force expression’ for Tzx . Mechanical stability requires〈
F [1]

x

〉
+

〈
F [2]

x

〉 = 0 (22)

thus providing a useful check on internal consistency of the computer simulation results (see
table 1).

Table 1. Comparison of virial and force expressions for Tzx . Entries are obtained from Monte
Carlo simulations in the grand mixed stress–strain ensemble for various sheared bridge-phase
morphologies (characterized by 〈sz〉).

From (17) From (24)

cr αsx 〈sz〉 〈F [1]
x 〉/A 〈F [2]

x 〉/A Tzx

2
10 1.70 2.122 0.068 −0.068 0.068
4

10 1.75 2.069 0.144 −0.144 0.144
4

10 2.50 2.075 0.160 −0.161 0.160
4

10 1.75 3.060 0.086 −0.086 0.087
4

10 2.50 3.067 0.101 −0.101 0.101
4

10 1.75 3.989 0.051 −0.051 0.049
4

10 2.25 3.974 0.059 −0.058 0.059
4

10 2.50 4.013 0.060 −0.058 0.056
6

10 1.75 2.063 0.141 −0.143 0.142
6

10 2.50 2.064 0.157 −0.153 0.154
6

10 1.75 3.038 0.084 −0.084 0.084
6

10 2.50 3.042 0.092 −0.093 0.093
8

10 1.75 2.054 0.066 −0.064 0.065
8

10 2.50 2.056 0.034 −0.034 0.034

Notice, however, that

f [k]
x

x̃→−x̃−→ −f [k]
x (23)

indicating that f [k]
x is an odd function of x̃ which follows from the same considerations as

were applied to �[k] in section 2. The odd symmetry of f [k]
x under transformations x̃ → −x̃

is a direct consequence of the symmetry of I1 and I2 which (unlike their counterparts I3 and
I4, see (4), (5)) are even functions of x ′′. For α = 0, 1

2 , the probability density distribution in
the grand mixed stress–strain ensemble is symmetric with respect to the plane x = 0 with the
result that, because of the symmetry of f [k]

x , 〈F [k]
x 〉 ≡ 0. Notice, however, that the probability

density distribution is not symmetric with respect to the plane x = 0 for {α|0 < α < 1
2 }.

Consequently, one expects nonvanishing shear stresses over this range of shear strains.
In [27] it was also demonstrated that an alternative expression

Tzx = T FF
zx + T FS

zx (24)
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can be derived for the shear stress in the spirit of Hill [28]. This treatment, fully detailed
in [27], starts from the explicit expression

Z =
N∏
i=1

∫ sy/2

−sy/2
dyi

∫ sz/2

−sz/2
dzi

∫ sx/2+αsx(2zi+sz)/2sz

−sx/2+αsx(2zi+sz)/2sz

dxi exp[−βU(rN)] (25)

for the partition function (see (15)) of a fluid in slit geometry confined by substrates that are
misaligned in the x-direction according to (2). Introducing the transformation

xi → x ′
i = xi − αsx(2zi + sz)/2sz

it is easy to verify that the integration limits in (25) become independent of the shear strain.
It is then straightforward to evaluate the partial derivative ∂Z/∂(αsx) in (17) employing
Leibniz’s rule for the differentiation of a parameter integral [29]. After reversing the coordinate
transformation one eventually obtains (24) where the fluid–fluid (FF) contribution is given by

T FF
zx = 1

2A

〈
1

sz

N∑
i=1

N∑
j=1
=i

u′
ff(rij )

xij zij

rij

〉
(26)

and u′
ff(r) := duff(r)/dr . By similar arguments (see [27] for details) one can derive

T FS
zx = − 1

A

〈
1

sz

2∑
k=1

N∑
i=1

f
[k]
x,i

(
zi ± sz

2

)〉
(27)

assuming that the origin of the coordinate system coincides with the fixed (average) position of
the centre of mass of the confined fluid. Equation (24) is termed the ‘virial expression’ for Tzx .
Both force and virial routes to Tzx are useful for checking the reliability of the simulations. As
can be seen from table 1, the agreement between the two expressions is very good even though
Tzx is rather small under typical conditions of this work. By the same approach one can derive

Tyy ≡ T FF
yy = −kBT

A

〈
N

sz

〉
+

1

2A

〈
1

sz

N∑
i=1

N∑
j=1
=i

u′
ff(rij )

yij yij

rij

〉
(28)

where, however, T FS
yy ≡ 0 because the fluid–substrate potential is translationally invariant in

the y-direction.
Another quantity of interest in the context of this work is the shear modulus

c44 :=
(

∂ 2Ĝ
∂(αsx)2

)
T ,µ,sx ,sy ,Tzz

=
(

∂Tzx

∂(αsx)

)
T ,µ,sx ,sy ,Tzz

(29)

in Voigt’s notation [30]. By a tedious but straightforward calculation parallel to the one detailed
in [14], one can show from (13)–(17) and (29) that

Ac44 = −β
[〈
F [2]

x

2
〉
− 〈

F [2]
x

〉2]
+

〈
∂2U

[2]
FS

∂(αsx)2

〉
. (30)

From (17), and (30) it is clear that

∂2U
[2]
FS

∂(αsx)2
= − ∂F [2]

x

∂(αsx)
= −

N∑
i=1

∂f [2]
x (̃xi, zi)

∂(αsx)
. (31)

The expression for the partial derivative off [k]
x is identical in form with (1) except that�(x ′′, z′′)

has to be replaced by (see (20), (21))

/(x ′′, z′′) := −x ′′

R
(11I1 − 5I2) (32)



1554 H Bock and M Schoen

which (like �(x ′′, z′′) in (1)) is an odd function of x ′′. Thus, from the same symmetry
considerations as were applied to f [k]

x above and to �[k] in section 2 it follows that c44 
= 0
over the entire range of shear strains, i.e. for {α|0 � α � 1

2 ∨ α 
= αyd} where αyd refers
to the yield strain (see section 4.1.1). Again for symmetry reasons (i.e., because of (22)),
an alternative expression can be obtained, replacing, however, in (30), U [2]

FS by U
[1]
FS and F [2]

x

by F [1]
x .

4. Results

Results were obtained for T = 1.0, µ = −11.455 (assuming argon), and Tzz = 0.0 where all
quantities are expressed in the customary dimensionless (i.e., ‘reduced’) units. That is, energy
is expressed in units of εff , length in units of σ , temperature in units of εff/kB, and stress in
units of σ 3/εff .

Equilibrium properties of the confined film are obtained in Monte Carlo simulations in
the grand mixed stress–strain ensemble introduced in section 3. However, instead of using
in these simulations the ‘full’ Lennard-Jones (LJ) (12, 6) potential to describe the fluid–fluid
interaction, we employ a ‘shifted-force’ version defined such that the LJ (12, 6) potential
and its first derivative vanish at the cut-off radius rc = 3.5. Since uff(rc) ≈ 0 as far as the
full LJ (12, 6) potential is concerned, the phase behaviour of a (bulk) fluid based upon the
shifted-force potential differs only marginally from that of the full LJ (12, 6) fluid. However,
as pointed out in [31], the shifted-force potential is advantageous because no long-range
correction has to be applied to the fluid–fluid interaction; that is, uff vanishes by definition
for all {r|r � rc}. This is particularly important in the present case where the Monte Carlo
algorithm, fully described in [19], involves changes in the number of molecules because the
thermodynamic state is specified by µ as one of the state variables. The associated density
change of ±1/N between pairs of consecutive trial configurations would require an analytic
energy correction during the generation of the Markov chain as far as the full (i.e., infinitely
long-range) LJ (12, 6) potential is concerned. While explicit expressions for correction terms
are available for the present slit-pore geometry [32], their application is not unproblematic
under all circumstances [33].

Under the present thermodynamic conditions, α = 0, and 2.0 � ds � 8.0, the confined
fluid forms a ‘bridge’ phase; that is, a high(er)-density portion of the fluid is stabilized between
the (aligned) strongly adsorbing strips whereas a low(er)-density regime exists over the two
outer weakly adsorbing strips. This characteristic structure is illustrated by the plot of the local
density ρ(x, z) in figure 2(a). Bridge phases may coexist with liquidlike or gaslike phases
characterized by high(er)- and low(er)-density fluids, respectively, supported by the entire
substrate material (see figure 2(b), figure 2(c)). By virtue of its structure, only bridge phases
can sustain a substantial shear strain. However, if a bridge phase is exposed to a sufficiently
large shear strain it may undergo a first-order phase transition and form either a gaslike or a
liquidlike phase [34,35]. The phase behaviour of confined fluids involving gaslike, liquidlike,
and bridge phases is extensively discussed in a number of papers both under shear [34,35] and
for substrates in registry [24, 36, 37]—that is, in the absence of a shear strain.

4.1. Stress curves

4.1.1. General features of stress curves. The key quantity calculated in the present Monte
Carlo simulations is the stress curve Tzx(αsx) accessible via (17)–(22) and the alternative
expressions in (24)–(27). Regardless of the thermodynamic state and the thickness (i.e., sz) of
a bridge phase, a typical stress curve plotted in figure 3 exhibits the following features:
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Figure 2. Typical microscopic structures of fluids confined between chemically striped substrates
(see figure 1). The plots show local density ρ(x, z) as a function of position in the x–z plane:
(a) bridge phase (sz = 7.2); (b) liquidlike phase (sz = 7.5); (c) gaslike phase (sz = 8.2) (see the
text). Data are taken from [24] for a thermodynamic state specified by T = 1.0 and µ = −11.50;
the substrate parameters are sx = 12.0, ds = 4.0, dw = 8.0 with εfs and εfw as in this work.
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Figure 3. A typical stress curve Tzx(αsx) for a monolayer bridge phase and cr = 5
10 . The solid

line is a least-squares fit of a polynomial to the (discrete) Monte Carlo data points (♦) intended to
guide the eye.

(a) For vanishing shear strain (i.e., α = 0), Tzx(0) ≡ 0 for symmetry reasons.
(b) Tzx(αsx) depends linearly on the shear strain αsx in the limit α → 0; that is, the response

of the bridge phase to small shear strains follows Hooke’s law.
(c) For larger shear strains, negative deviations from Hooke’s law are observed, eventually

leading to a yield point (αyd, T
yd
zx ) defined by the constitutive equation(

∂Tzx

∂(αsx)

)
T ,µ,sx ,sy ,Tzz

∣∣∣∣
α=αyd

= 0 (33)

or, alternatively (see (29)),

c44(α
ydsx) = 0 fixed T ,µ, sx, sy, Tzz. (34)

(d) For symmetry reasons, Tzx(sx/2) ≡ 0 (i.e., for α = 1
2 ).

These general characteristics of stress curves have also been observed previously in simulations
of ‘simple’-fluid films confined between chemically homogeneous but atomically structured
(i.e., discrete) substrates [7–10, 13–20]. The substrates were composed of a single layer of
Lennard-Jones atoms arranged according to a plane of the face-centred cubic lattice. In the
earlier studies the unstrained phase was solidlike on account of a template effect imposed on
the confined fluid by the discrete nature of the substrate material. No solidification occurs here
under the present thermodynamic conditions.

4.1.2. The impact of substrate corrugation. As far as the present model is concerned, the
degree of chemical corrugation of the substrate has significant consequences for the yield-point
location (αyd, T

yd
zx ). For the subsequent discussion it is convenient to cast chemical corrugation

quantitatively in terms of the ratio cr := ds/sx . Plots of stress curves for various values of
cr are shown in figure 4(a). For monolayer bridge phases and fixed sx = 10, one can see
from figure 4(a) that both T

yd
zx and αyd are smallest for the smallest cr = 2

10 . For cr < 2
10

only gas phases are thermodynamically stable because the strongly attractive portion of the
substrate is too small to support formation of denser (bridge) phases. As cr increases, both
T

yd
zx and αyd increase until they reach their maximum values (αydsx, T

yd
zx ) ≈ (2.740, 0.169) for
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Figure 4. (a) Stress curves Tzx(αsx) for various chemical corrugations cr = 2
10 (+), 3

10 (×), 4
10 (◦),

5
10 (�), 6

10 (♦), 7
10 (∗), 8

10 (�). Solid lines are intended to guide the eye. (b) A reduced stress
curve T̃zx (̃α) (see (39)) where the symbols are referring to data plotted in (a). The solid line is a
representation of (40).

cr = 5
10 . For larger cr > 5

10 , the plots in figure 4(a) show that both T
yd
zx and αyd decrease again

until (αydsx, T
yd
zx ) ≈ (1.550, 0.069) for cr = 8

10 , which is the largest substrate corrugation
for which bridge phases were observed. For cr > 8

10 , only thermodynamically stable liquid
phases formed in the simulations, incapable of sustaining a shear strain.

One also notices from figure 4(a) that stress curves for cr = 2
10 , 3

10 , and 4
10 apparently

do not cover the entire range of shear strains. In these cases the strongly attractive portion of
the substrates is too narrow to stabilize the denser portion of a bridge phase regardless of the
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applied shear strain. At some strain threshold αcsx , the bridge phase is simply ‘torn apart’ and
undergoes a first-order phase transition to a gaslike phase. This gaslike phase, by virtue of its
microscopic structure (see figure 2(c)), is incapable of sustaining a shear stress. Thus, at αcsx ,
Tzx drops to zero discontinuously such that Tzx ≡ 0 for all {α|αc � α � 1

2 }. For the sake of
clarity we do not plot this part of the stress curves in figure 4(a). We will report on this (and
other) shear-strain-induced phase transitions in a separate publication [35].

Despite this nonmonotonic variation of the yield-point location with cr, it turns out that
within the theory of corresponding states [38] it is feasible to renormalize stress curves such
that all data points fall onto a unique master curve. Renormalization is effected by introducing
dimensionless variables T̃zx := Tzx (̃αsx; cr)/T

yd
zx (cr) and α̃ := αsx/α

yd(cr)sx . Normalization
by αyd and T

yd
zx is consistent with the theory of corresponding states because it was pointed out

in [14] that the yield point may be perceived as a shear critical point analogous to the liquid–
gas critical point in pure homogeneous fluids. If the simulation data plotted in figure 4(a) are
renormalized according to this recipe, they can indeed be represented by a master curve as the
plot in figure 4(b) shows.

4.1.3. Universality of stress curves. The remarkable insensitivity of T̃zx (̃α) to variations of
cr can be rationalized as follows. Because of the Hookean regime in the limit αsx → 0, c44

should be approximately constant and positive in this limit. A typical plot in figure 5 confirms
this notion. However, because of (34) one expects c44 to decline from its Hookean value as
αsx → αydsx , also in agreement with figure 5. Furthermore, since figure 5 shows that the
variation of c44 with αsx is not too strong over the range {α|0 � α � αyd}, it seems sensible
to expand c44 in a power series according to

c44(αsx) =
∞∑
k=0

1

k!

d(k)c44

d(αsx)k

∣∣∣∣
α=0

(αsx)
k =

∞∑
k=0

ak(αsx)
k � a0 + a2(αsx)

2 (35)

where we refer to the far right side as the small-strain approximation. Notice that the set of
coefficients {ak} refer to the unstrained bridge phase (i.e., α = 0). A molecular expression

-0.2

-0.1

0

0.1

0.2

0 1 2 3

c
4
4

�sx

Figure 5. Shear modulus c44 as a function of shear strain αsx . ◦: Monte Carlo simulations in
the grand mixed stress–strain ensemble; ——: representation of the small-strain approximation
c44(αsx) = a0 + a2(αsx)

2 (see (35), (36)).



Confined fluids exposed to shear strain 1559

for a0 ≡ c44(0) is given in (30). In the small-strain approximation, a2 accounts for deviations
from Hookean behaviour and may therefore be interpreted as a measure of the plasticity
of the unsheared confined film. From symmetry considerations detailed in section 2 and
section 3.2 and the definition of {ak} in (35), it is furthermore clear that for α = 0, a2k−1 ≡ 0
(k = 1, . . . ,∞). However, we note in passing that these coefficients do not vanish a priori for
α 
= 0 for symmetry reasons (see section 3.2). From (29) and (35) we obtain the (shear stress)
equation of state

Tzx(αsx) =
∫ αsx

0
d(α′sx) c44(α

′sx) � a0αsx +
1

3
a2(αsx)

3 (36)

based upon the small-strain approximation. In principle, a0 and a2 are determined by the
ordinate and initial curvature of the function c44(αsx) (α → 0) (see figure 5). The latter is
extremely difficult to extract given the typical accuracy with which the shear modulus can be
calculated in our Monte Carlo simulations (see figure 5). However, an accurate estimate is
possible based upon (33) which, together with (36), leads to

a0 ≡ c44(0) = 3

2

T
yd
zx

αydsx
(37)

and

a2 ≡ 1

2

d2c44(αsx)

d(αsx)2

∣∣∣∣
α=0

= −3

2

T
yd
zx

(αydsx)3
(38)

in terms of yield stress and strain. These latter quantities can be determined with high precision
from (17), (24), and plots similar to the ones shown in figure 3, figure 4(a), and figure 6(a).
The validity of (37) is illustrated by table 2 where we compare it with the shear modulus
obtained directly from the molecular expression (30) for a selection of unsheared bridge phases.
Inserting now (37) and (38) into the equation of state (36) (in the small-strain approximation)
together with making the transformations

αsx → α̃ := αsx

αydsx

Tzx → T̃zx := Tzx

T
yd
zx

(39)

permits one to recast (36) as

T̃zx = α̃(3 − α̃)

2
(40)

Table 2. Comparison of the shear modulus c44 from the molecular expression and the yield-point
location.

From (37) From (30)

cr 〈sz〉 αydsx T
yd
zx c44(0) c44(0)

2
10 2.113 1.350 0.075 0.084 0.079
4

10 2.075 2.499 0.161 0.096 0.088
4

10 3.057 2.588 0.101 0.058 0.060
5

10 2.069 2.743 0.169 0.092 0.101
6

10 3.044 2.412 0.095 0.059 0.066
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Figure 6. (a) As figure 4(a), but for monolayer (◦), bilayer (�), and trilayer (+) morphologies and
cr = 4

10 . (b) As figure 4(b), but for the data points plotted in (a).

where up to the yield point {̃α|0.0 � α̃ � 1} and {T̃zx |0 � T̃zx � 1} are dimensionless
numbers, so (40) may be viewed as a master (stress) equation in agreement with the plot in
figure 4(b). We emphasize that the master equation is a direct consequence of the small-strain
approximation. A unique representation of stress curves is precluded if, on the other hand, one
includes higher-order terms proportional to a2k (k � 2) in the expansion (35), because then
expressions for αydsx and T

yd
zx (determined via (34), (36)) depend on the expansion coefficients

in a complex way. Thus, if these expressions are introduced in (39) and the resulting equations
for Tzx and αssx are inserted subsequently into (36), there is no hope of obtaining a unique
expression like (40) free of any material constants {a2k} (see also section 5).
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It is furthermore noteworthy that universality of stress curves, as defined here, is not
restricted to monolayer fluids. Plots of T̃zx versus α̃ in figure 6(b) show that simulation data
for monolayer, bilayer, and trilayer bridge phases can also be mapped onto the master curve
(40) according to the treatment detailed in this section. Again, the stress curves in figure 6(a)
end at some αcsx because the bridge phases evaporate (see section 4.1.2).

4.2. Thermodynamic stability

From a fundamental point of view, bridge phases comprising different numbers of molecular
strata may be viewed as different thermodynamic phases. This interpretation is evident
from (10) and (11) indicating that these different bridge-phase morphologies, generally cor-
responding to different values of sz and Tyy , will exhibit different values of the generalized
Gibbs potential Ĝ. A multiplicity of morphologies exist despite the fact that the thermodynamic
state is uniquely specified by the set {T ,µ, sx, sy, Tzz, αsx} of natural variables of Ĝ. However,
from an equilibrium perspective, only the morphology corresponding to the global minimum
of Ĝ is a thermodynamically stable phase; the others must be metastable.

Fortunately, only a small, finite number of possible morphologies can exist under the
present thermodynamic constraints. This can be understood by considering the (normal)
compressional stress Tzz plotted as a function of substrate separation sz in figure 7(a). Data
plotted in figure 7 were obtained in Monte Carlo simulations in the grand canonical ensemble
in which a thermodynamic state is specified by a choice of natural variables similar to the ones
determining Ĝ, replacing, however, Tzz by its conjugate variable sz. The plot in figure 7(a)
shows that Tzz is a damped oscillatory function of sz. These oscillations are fingerprints of
stratification—that is, the formation of new fluid layers as the substrate separation increases
at constant T and µ [26]. Damping can be ascribed to the decreasing influence of � which
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Figure 7. (a) Normal compressional stress Tzz (a) (see section III.A in [26] for molecular exp-
ressions) as a function of substrate separation from Monte Carlo simulations in the grand canonical
ensemble (◦) (αsx = 0.0). Solid lines are intended to guide the eye. (b) As (a), but for areal free-
energy density ζ (see (10)). Intersections between the latter and vertical lines demarcate (meta-
or thermodynamically) stable states in the grand mixed stress–strain ensemble for Tzz = 0.0 (see
the text).
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becomes negligible if sz exceeds some critical value sc
z . For {sz|sz � sc

z} one expects a
homogeneous region to exist in the confined fluid. The homogeneous region is centred
halfway between the two substrates, it increases in size with sz, and its local density (which
is independent of position) equals that of a corresponding bulk phase for the same T and µ.
As a result, limsz→∞ Tzz(sz) = −Pbulk where Pbulk(µ, T ) � 0.03 is the bulk pressure. In
other words, because stratification diminishes with increasing sz, oscillations in Tzz(sz) vanish
eventually, too [39]. Therefore, the plot in figure 7(a) shows that under the present conditions
and for sz � 6.0, stratification becomes subdominant.

In the grand mixed stress–strain ensemble, morphologies consistent with the set
{T ,µ, sx, sy, Tzz, αsx} of state variables can now be identified with intersections between
the oscillatory curve Tzz(sz) and the isobar Tzz = constant � 0. However, only intersections
for which dTzz/dsz � 0 correspond to (thermodynamically or meta-) stable states as pointed
out in [40]; intersections for which dTzz/dsz < 0 pertain to unstable states which cannot
be realized in Monte Carlo simulations in the grand mixed stress–strain ensemble. The
thermodynamically stable morphology corresponds to the intersection having the smallest
ζ (Tzz = 0) according to (10) and (11). With this rationale, an inspection of figure 7 shows
that the thermodynamically stable, unstrained morphology (α = 0.0) is a monolayer film with
sz � 2.1 (Tzz = 0.0). If confined films are progressively sheared, a parallel analysis of plots
in figure 8 and figure 9 shows that the minimum of ζ for sz � 2.1 becomes shallower while
another minimum around sz � 3.1, corresponding to a bilayer film, becomes deeper with
increasing shear strain. Eventually the depth of the latter minimum exceeds that pertaining to
the monolayer film with the result that a bilayer film becomes the thermodynamically stable
morphology. Thus, a shear strain exists such that ζ is the same for monolayer and bilayer
films. At this shear strain (A = constant), the two morphologies may therefore be viewed as
coexisting phases in the usual sense.
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Figure 8. As figure 7, but for αsx = 2.25.

To obtain a more concise picture of thermodynamic stability of different film
morphologies, we plot ζ as a function of αsx in figure 10 for the same system as was analysed
in figure 7–figure 9. In a sequence of Monte Carlo simulations in the grand mixed stress–strain
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Figure 9. As figure 7, but for αsx = 2.50.

ensemble, we calculate ζ directly from (10) (Tzz = 0) using the molecular expression for Tyy

given in (28). An alternative expression for ζ(αsx) can be obtained by integrating (9):

ζ(αsx) = ζ(0) +
∫ αsx

0
d(α′sx) Tzx(α

′sx) fixed T ,µ, sx, sy, Tzz

� ζ(0) +
a0

2
(αsx)

2 +
a2

12
(αsx)

4 (41)

where the second line is based upon the small-strain approximation (see (36)). Full lines
in figure 10 are representations of (41) where the constants a0 and a2 were determined as in
section 4.1.3. Solid lines plotted in figure 10(a) are therefore obtained without further adjusting
a0 and a2; ζ(0) is taken from Monte Carlo simulations for unstrained bridge phases. The
excellent agreement between ζ(αsx) from the Monte Carlo simulations in the grand mixed
stress–strain ensemble and the small-strain approximation in (41) highlights once more the
validity of the latter for all {α|α � αyd}. However, the plot in figure 10(a) also shows that
the small-strain assumption is doomed to fail for sufficiently large shear strains in accord with
one’s expectation.

From the plots in figure 10(a) one also notices that ζ (and therefore Ĝ, A = constant)
is lowest for a monolayer bridge phase over the range 0.0 � αsx � 2.2 indicating that the
monolayer is the thermodynamically stable morphology in this regime. Figure 10(a) also
shows that intersections α∗sx exist at which Ĝ assumes the same value for a pair of different
morphologies. Thus, at α = α∗ these different morphologies coexist, so the points α = α∗

correspond to first-order phase transitions between bridge phases comprising different numbers
of molecular strata. While there is no obvious relationship between α∗ for the coexistence of
monolayer and bilayer morphologies and αyd, we notice that for all the cases investigated a
monolayer film is the thermodynamically stable morphology for all {α|α � αyd}, so up to the
yield point, the plots in figure 4 apparently pertain to thermodynamically stable phases.

Thicker films are therefore thermodynamically stable only if the shear strain exceeds the
yield strain. For example, plots in figure 10(b) for cr = 6

10 show that ζ for a bilayer bridge phase
is lower than for the corresponding monolayer bridge phase over the range 2.3 � αsx � 5.0
where the bilayer bridge phase is the thermodynamically stable phase according to the above
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Figure 10. (a) Areal free-energy density ζ as a function of shear strain αsx for monolayer (◦),
bilayer (�), and trilayer (+) morphologies calculated in grand mixed stress–strain ensemble Monte
Carlo simulations (see (10), (28)) for cr = 4

10 . The solid lines are calculated from (41). (b) As (a),

but for cr = 6
10 .

discussion. An additional trilayer bridge phase was investigated for cr = 4
10 , as plots in

figure 10(a) show. For cr = 4
10 , the bilayer is thermodynamically stable over the range

2.4 � αsx � 3.3 whereas the trilayer film seems to be thermodynamically stable over the
range 3.3 � αsx � 4.0 where all three curves end. However, for the trilayer morphology the
statistical error of ζ(αsx) is already quite large because Tyy is small (see figure 7–figure 9).
For α � 4.0, bridge phases become unstable and the system undergoes a first-order phase
transition to a gas phase [34, 35].
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5. Discussion and conclusions

In this paper we investigate the behaviour of fluids confined between plane-parallel, chemically
patterned substrates consisting of alternating weakly and strongly adsorbing solid slabs. Under
favourable thermodynamic conditions a higher-density portion of the confined fluid stabilized
by the strongly adsorbing substrate material is surrounded by a lower-density portion supported
by its weakly adsorbing parts. We refer to this structure as a bridge phase. By misaligning
the substrates along the x-direction, bridge phases can be exposed to a shear strain and the
associated shear stress can be calculated from molecular expressions. We employ a grand
mixed stress–strain ensemble in which the film is open to a thermal, material, and normal-stress
reservoir to mimic to some extent conditions characteristic of parallel experiments employing
the SFA. These experiments permit one to measure almost routinely the rheological properties
of molecularly thin confined films.

Our findings can be summarized as follows:

(a) Most importantly, confined phases can have a noncrystalline structure and yet are able to
sustain a nonvanishing shear strain. This implies that mere confinement, which, in the
present model, reduces molecular mobility in one direction, is sufficient to account for the
rheological behaviour of confined phases (see figure 3, figure 4, figure 6).

(b) Stress curves for strained bridge phases are qualitatively similar to those obtained earlier
for strained solidlike confined films in that they exhibit a Hookean regime for small strains
and a yield point on account of an increasingly plastic response at higher shear strains (see
figure 3(a), figure 6(a) and figure 11(a)).

(c) The shear strain sustained by a bridge phase is typically one order of magnitude smaller
compared with earlier results for solidlike films on account of the much higher degree of
disorder typical of a bridge phase.

(d) Both yield strain and yield stress depend sensitively and nonmonotonically on the degree
of chemical corrugation of the substrate—that is, on the ratio of the widths of the strongly
and weakly adsorbing portions of the substrate (see figure 4(a)).

(e) Within the framework of the theory of corresponding states [38], different stress curves
can be renormalized in terms of yield strain and stress so that all data fall onto a unique
master curve for shear strains up to the yield strain (see figure 4(b), figure 6(b)). This
supports an earlier interpretation [14] which viewed the yield point as the shear analogue
of the liquid–gas critical point in pure homogeneous fluids.

A master equation is obtained upon expanding the shear modulus in terms of the shear
strain retaining only terms up to second order. If higher-order terms are included a unique
representation of the stress curve is impossible because the resulting analytic expression for the
renormalized stress will inevitably depend on properties of the specific bridge phase considered.

The possibility of renormalizing stress curves according to (39) was first noted by Bordarier
et al [15]. These authors studied ‘simple’-fluid films confined between discrete substrates and
observed that for different loads Tzz and temperatures T , stress curves for films of variable
thickness can be mapped onto a unique master curve similar to those in figure 4(b) and
figure 6(b) of this work. To interpret their data, Bordarier et al employ a fit equivalent to
the expansion (35) including, however, terms up to a4 (see (5) of [15]). However, as pointed
out in section 4.1.3, a unique representation of various stress curves is precluded formally
at the level of the expansion utilized by Bordarier et al. It is then not surprising that the
parameters required to represent the renormalized stress curves through their fit function show
a small dependence on the specific thermodynamic state considered (see table 2 of [15]).
However, if truly unique, a consistent representation of various renormalized stress curves by
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a master equation must be free of any adjustable parameters like (40) of this work. The (small)
inconsistency in the analysis of Bordarier et al can also be seen from their figure 4–figure 6
where the representation of their renormalized simulation data by the fit function seems to
reach T̃zx = 1 for α̃ < 1. One is therefore forced to conclude that the demonstration of
uniqueness of stress curves in [15] is not entirely convincing. However, in view of this work
it seems likely that a universal representation of stress curves presented in [15] would be
possible based upon (40). This notion is supported by the plot in figure 11 where we show that
even for a film of spherically symmetric Lennard-Jones molecules between discrete substrates
(see section 1) the theory of corresponding states (see (40)) can be employed to predict the
(normalized) stress curve. However, here the term TzxA d(αsx) in (9) must be replaced by
TzxA d(α�) (0.0 � α � 0.5, � = 22/3 for the (perfect) (100) structure of a face-centred cubic
lattice at T = 0) on account of the discrete atomic structure of the substrate (see section 1).
Consequently, the first expression in (39) has to be replaced by its analogue (see figure 11(b))

α̃ := α�

αyd�
. (42)
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Figure 11. As figure 4, but for a solidlike film forming between discrete substrates (from [13]; see
the text).
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Furthermore, since the unsheared (α = 0) film in figure 11 is solidlike (see figure 2(c) and
figure 6 of [13]) and because figure 4(b) shows the validity of the theory of corresponding states
even if the confined phase is noncrystalline, it seems highly unlikely that the general response
of confined condensed matter to a shear strain (up to the yield point) reflects the presence or
absence of solidlike order in any sense. In other words, as far as confined phases are concerned
our findings do not support the notion that ‘the ability to sustain a shear stress is a fundamental
signature of a solid: a liquid, by definition, cannot sustain such a stress’ (quoted from [3]). On
the contrary, the only difference between strained solidlike and fluidic phases in confinement
is the magnitude of yield stresses and strains, which may well differ by an order of magnitude
depending on the degree of order present. This is illustrated by comparing the maxima of the
stress curves plotted in figure 3 and figure 11 as well as by noting that for the same value of α
the shear strains differ by a factor of sx/� � 6.3 between the present model with chemically
corrugated substrates and the one with atomically structured substrate surfaces. However, we
emphasize that there is no obvious relation between the yield-point location (αyd, T

yd
zx ) and the

degree of order. If one wishes to determine whether or not the confined phase is solidlike, an
analysis of its microscopic structure in terms of suitably defined spatial correlation functions
is absolutely indispensable. It is impossible to determine the physical state of the confined
phase solely from its thermomechanical properties.

If solidlike structure is not the sole cause of the rheological behaviour of confined phases,
by what more general principle may it be accounted for? Our study suggests that the more
likely origin of the response of confined phases to shear deformations is their inhomogeneity in
the direction of the applied shear strain induced by the substrate under suitable thermodynamic
conditions. An example are the present bridge phases which are characterized by a local density
depending on the position in the x-direction (see figure 2(a)). Consequently, if sheared in this
direction, a nonvanishing shear stress is obtained. Since, on the other hand, the structure
of a bridge phase is translationally invariant in the y-direction, Tzy ≡ 0. If thermodynamic
conditions are such that gas or liquid phases occupy the accessible space between the present
substrates, the confined phase is (nearly) homogeneous in both the x- and the y-direction.
Consequently, the response of these phases to shear deformation is nullified in accord with the
above rationale. Notice that unsheared solidlike phases between discrete substrates are also
inhomogeneous but on an atomic length scale, because film molecules vibrate around their
equilibrium positions with an amplitude much smaller than �. However, in this case the film
is inhomogeneous in both the x- and the y-direction. Hence, a nonzero stress is detected if the
confined phase is sheared in the direction of any unit vector in the x–y plane.

If inhomogeneity in transverse direction(s) rather than solidification is the cause of the
rheology of confined soft condensed matter, it also seems easier to rationalize experimental
data for a variety of confined organic substances involving cyclic and chainlike hydrocarbons
[3, 4, 22, 41–43]. Regardless of details of molecular structure, the responses of these various
fluids to a shear strain are qualitatively the same if they are confined to molecularly small gaps
by mica surfaces, say. Given the crystal structure of mica, on the other hand, it seems rather
unlikely that all these fluids solidify under confinement conditions. Interestingly, Qiao and
Christenson [44] have recently reported on the absence of solidification in confined phases at
temperatures above the bulk melting point, thus contradicting the observations of [3,4,42,43].
However, since the confining substrates in the SFA cannot be expected to be perfectly planar on
an atomic scale, it seems possible that the confined films are inhomogeneous in directions of the
applied shear strain which could account for the observed resistance towards shear deformations
according to our above line of arguments. This, in turn, would also imply that most of the
simulational work to date (studying solidlike films) deals with a very special situation which
may bear only little or no resemblance to situations encountered in SFA experiments.
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[37] Röcken P, Somoza A, Tarazona P and Findenegg G H 1998 J. Phys. Chem. 108 8689
[38] Münster A 1969 Statistical Thermodynamics vol 1 (Berlin: Springer) ch 8.5
[39] Evans R, Henderson J R, Hoyle D C, Parry A O and Sabeur Z A 1993 Mol. Phys. 80 755
[40] Schoen M, Gruhn T and Diestler D J 1998 J. Chem. Phys. 109 301
[41] Hu H-W, Carson G A and Granick S 1991 Phys. Rev. Lett. 66 2758
[42] Demirel A L and Granick S 1996 Phys. Rev. Lett. 77 2261
[43] Gee M L, McGuiggan P M, Israelachvili J N and Homola A M 1990 J. Chem. Phys. 93 1895
[44] Qiao Y and Christenson H K 1999 Phys. Rev. Lett. 83 1371


